IT427
Course Name:
Genetic Algorithms (IT427)
Programme:
Category:
Credits (L-T-P):
Content:
Introduction, Possible Applications, Pros and Cons, Principles of Evolutionary Processes and Genetics Introduction to Evolutionary Computation: Biological and artificial evolution, evolutionary computation and AI, different historical branches of EC, a simple genetic algorithm. Search Operators: Crossover, mutation, crossover and mutation rates, Crossover for real-valued representations, mutation for real-valued representations, combinatorial GA, Selection Schemes: Fitness proportional selection and fitness scaling, ranking, tournament selection, selection pressure and its impact on evolutionary search. Theoretical Analysis of Evolutionary Algorithms: Schema theorems, convergence of the algorithms, computational time complexity of the algorithms, no free lunch theorem. Search Operators and Representations: Mixing different search operators, adaptive representations. Niching and Speciation: Fitness sharing, crowding and mating restriction. Constraint Handling: Common techniques, penalty methods, repair methods, Deb's penalty parameter method. Multiobjective evolutionary optimization: Pareto optimality, multi-objective evolutionary algorithms: MOGA, NSGA-II, etc. Applications of GA in engineering problems, job-shop scheduling and routing problems. Evolutionary robotics and evolutionary hardware: Evolving control. Evolving morphology. Body-brain co-evolution. Evolution in simulation and in reality. The case for and against simulation.